If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2-36u=0
a = 3; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·3·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*3}=\frac{0}{6} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*3}=\frac{72}{6} =12 $
| 5+k/3=3 | | 25+10x=15+2x | | 202=50-v | | 3x-3=3(2x+1) | | 9x-10=83+127 | | 4x+39+47-3x=90 | | 20w-15=2w+3 | | 4(7n+1)=33-n | | 202=50/v | | -3x+12=9x+-4 | | 5x+15=12x-13 | | 0.6x-14=1.2x-17 | | 4x+7-2x=-17 | | 6h=–6+7h | | 4x-18=x3 | | 3(-8x-3)=23-8x | | 7-2-x/3=2x | | 11x-99=x+171 | | 2x.7=17 | | 11+9m=8m | | (2x+23=3x+2 | | 55+30x=175 | | 32=y=-4 | | 50=50+10x | | 8x+5=10x+9 | | -1+8n+2-4n=n-8 | | 6=10.6+3.4x | | 11+5y=-19+3y | | -0.58x+0.38x=5.6 | | 1/35x-19=-5 | | -3(-5+2)=30-x+12 | | 10+2y=5+3y |